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Abstraet--A detailed numerical model is presented for predicting electromagnetic fields in microwave 
waveguides and cavities, and the power deposition and temperature distribution in processed samples. 
Implementation of explicit finite difference schemes for solving the coupled unsteady Maxwell and energy 
equations is discussed. Simulations are performed illustrating the influence of working frequency, sample 
size and dielectric properties. The occurrence of resonant conditions, where constructive electromagnetic 
wave interference patterns produce high electric field intensities at discrete locations throughout the cavity, 
is shown to be the key ingredient for achieving high heating levels. The presence of coupled nonlinear 
processes is significant in materials which exhibit temperature dependent electromagnetic properties. This 
is illustrated in 1:he processing of alumina, where local heating produces an exponential rise in temperature, 

once a critical temperature level is achieved. 

1. INTRODUCTION 

The ability of microwave radiation to penetrate and 
couple with materials has led to its extensive use in the 
food industry. More recently, microwaves are being 
considered for a wide variety of other uses. Compared 
to conventional heating methods, microwave pro- 
cessing can provide more rapid and uniform heating 
in a clean environment, offering improvements in 
product quality, the production of unique micro- 
structures and prope~rties, and reductions in manu- 
facturing costs and processing times. Uniform heating 
reduces thermal stre,;ses, avoiding cracking during 
processing. Selective heating is also possible since 
microwave absorption varies with material com- 
position and structure. Industrial heating (large vol- 
ume drying of textil,es, ceramics and rubber) and 
materials development (polymer matrix composites 
and epoxy curing, ceramic sintering and binder burn- 
out, and plasma processing) stand out as important 
microwave processing applications that have been 
studied [1-3]. Microwave processing can also be used 
to efficiently remove volatile constituents deep within 
materials. For example, sulfur can be removed from 
coal as a pre-combustion treatment [4], contaminants 
(such as petroleum d~rived hydrocarbons) removed 
from soils or sludges [5], and polymeric binders 
removed from ceramics during forming [6]. A new 
and exciting area for microwave heating applications 
is in the processing of hazardous wastes, finding use in 
the treatment of nuclear waste, gaseous air pollutants, 
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sewage sludges and waste water, and contaminated 
soils [7]. 

The intensity and spatial distribution of microwave 
energy throughout a material specimen is dictated by 
the complexity of electromagnetic scattering and 
absorption within the material, as well as reflections 
at the enclosure walls. As a result, obtaining desired 
heating patterns or precise control of specimen tem- 
perature distribution is often problematic. To illus- 
trate the complex nature of microwave processing 
devices, a cross-sectional view of some important pro- 
cessing components of a microwave oven is shown 
in Fig. 1. Microwave appliances have three major 
components: a microwave generator, a waveguide, 
and an applicator. In most commercial and industrial 
ovens, microwaves are generated by magnetron tubes. 
Once microwaves are produced they are fed into the 
applicator (cavity) through a transmission device 
called a waveguide. Waveguides and cavities come in 
a variety of shapes and sizes, which should be chosen 
for a specific application. Their design is generally 
dependent on operating frequency, the nature and 
dimensions of the product to be processed, and the 
type of processing (batch or continuous). While 
microwave hardware design has focused on electrical 
parameters governing wave propagation and attenu- 
ation, it is the thermal characteristics that ultimately 
determine the end-product and which need to be 
closely tied to the design process. 

Cavities are broadly classified as either single-mode 
or multi-mode. Single-mode cavities support a single 
resonant mode at a given frequency, making the field 
distribution throughout the cavity very nonuniform. 
As a result, hot spots can occur in regions of high 
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NOMENCLATURE 

magnetic induction [(N s) (C m)-1] 
specific heat [(W s) (kg °C) 1] 
speed of light [m s ~] 
electric field intensity [V m-1] 
radiative view factor 
frequency [Hz] 
magnetic field intensity 
[A m -I] 
convective heat transfer coefficient 
[W m -2 ° C - q  
thermal conductivity [W m-  ~ °C- 1] 
imaginary component of 
refractive index 
real component of refractive 
index 
electromagnetic heat source 
[W m -3] 
total average power absorbed per 
unit depth [W m -~] 
convective heat loss [W m -2] 
radiative heat loss [W m -2] 
temperature [°C]. 

Greek symbols 
skin depth [m] 

e electric permittivity [C 2 (N m 2) J] 
radiative emissivity 

2 wavelength [m] 
p magnetic permeability [(N s 2) C -2] 
p density [kg m -3] 
a Stefan Boltzman constant 

[5.607 x 10 -8 W m -2 K 4] 
cre electrical conductivity [S m-1] 
co angular frequency (2nf) [Hz]. 

Subscripts 
a ambient 
e edge 
0 vacuum property 
r relative (property in 

medium/property in vacuum) 
rms root-mean-square. 

Superscripts 
n discretized time step. 

electric field intensity, requiring careful sizing and 
placement of materials. Single-mode cavities have 
been used successfully for processing small samples 
(typically less than 1.5 in in diameter) and fibers, but 
are generally not appropriate for larger specimen vol- 
umes. Multi-mode cavities attempt to avoid this prob- 
lem by over-sizing the cavity and/or increasing the 
frequency of the excitation source so that a number 
of high-order modes are supported simultaneously. 
While the fields within an empty cavity will be more 
uniform, the electromagnetic field intensity can be 
highly distorted if an absorbing material is placed in 
the cavity. Field distortion for high loss materials, 
such as ceramics, will generally be much greater than 

CAVITY 

Fig. 1. Schematic diagram of microwave cavity, waveguide, 
specimen and radiation source. 

for low loss materials, e.g. polymers. Achieving uni- 
form temperatures within the processed sample will 
be difficult unless the electromagnetic field dis- 
tribution can be well characterized and appropriate 
control measures taken, i.e. source pulsing, external 
surface heating, or simply moving the sample. 

In situations where materials absorb microwave 
radiation more efficiently at higher temperatures due 
to dramatic increases in electrical conductivity, a local 
exponential rise in temperature can occur. This 
phenomena, commonly referred to as thermal 
runaway, has been displayed in a variety of materials, 
including zirconia [8], alumina [9], macor (a machine- 
able glass ceramic) [10], nickel zinc ferrite [11] and 
nylon [12]. Poor product quality and sample cracking 
are often exhibited if temperature levels and dis- 
tributions cannot be controlled. Understanding, pre- 
dicting, and preventing or controlling thermal run- 
away presents a major challenge to the development 
of microwave processing. A number of strategies have 
been employed to avoid thermal runaway, including 
hybrid heating (conventional plus microwave heat 
sources) [9] and various control techniques (e.g. PID 
[10]). Since the real challenge of controlling thermal 
runaway is to avoid local hot spots, a detailed knowl- 
edge of local electromagnetic field intensities is 
imperative. Some work has been performed to charac- 
terize thermal runaway via numerical modeling [9, 13- 
15]. While these efforts have included temperature 
dependent properties, none have accounted for the 
spatial variation in the electric field intensity within 
the processed sample. 
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While lumped and uniform energy deposition mod- 
els are useful for understanding the qualitative influ- 
ence of processing parameters, models which include 
the temporal and spatial variation of the electro- 
magnetic field intensity within a cavity will provide a 
much more accurate means for predicting and assess- 
ing heating patterns. High quality predicative 
methods offer an inexpensive method to better assess 
the effects of sample size, shape, and physical proper- 
ties with respect to cavity geometries, power inputs 
and working frequencies. A variety of numerical 
approaches are available to simulate microwave- 
material interactions [16]. Generally, simulation of 
microwave deposition requires the solution of the 
equations governing electromagnetic propagation, i.e. 
Maxwell's equations, within both the microwave cav- 
ity/waveguide and the processed material. The finite- 
difference time-doma:in (FDTD) method [17, 18] has 
been used to provide a full description of electro- 
magnetic scattering and absorption and gives detailed 
spatial and temporal information of wave propa- 
gation. The method has received increased attention 
recently due to its versatility in handling complex 
shaped objects, a wide range of frequencies and stim- 
uli, and a variety of raaterials, including those which 
exhibit frequency and temperature dependence. Time 
domain modeling is altso useful for depicting resonant 
behavior [19], an important consideration in micro- 
wave processing. A discussion of the trade-offs 
between the FDTD :method and other widely used 
methods for simulating electromagnetic-material 
interactions, e.g. spherical wave expansions and inte- 
gral operators, can be found in refs. [19, 20]. Ref- 
erences [21-23] specifically discuss FDTD methods 
applied directly to microwave heating of samples with 
constant and uniform electromagnetic and thermal 
properties. 

To understand the influence of electromagnetic field 
patterns on microwave heating, we have developed 
a finite-difference time-domain model, coupled to a 
transient finite difference model for thermal transport. 
The FDTD expressicns, as derived from Maxwell's 
equations, are presemed along with discussions con- 
cerning numerical implementation as applied to 
microwave cavities. Two-dimensional waveguide/ 
cavity simulations are performed illustrating the 
field distortion caused by the presence of a glossy 
material. We show that via slight variation of an 
operating parameter (the frequency), the local elec- 
trical intensity in an empty cavity can change sig- 
nificantly, simulating resonant and off-resonant con- 
ditions. Parametric studies of sample size and 
dielectric properties show the variations in power 
deposition for different specimen types. Numerical 
coupling between the electro-magnetic and thermal 
fields is described, and its significance is illustrated in 
the heating of alumina, which exhibits strong electro- 
magnetic property temperature dependence. This 
simulation displays the local exponential temperature 
rise typical of thermal runaway. 

2. ELECTROMAGNETIC FIELD EQUATIONS AND 
FDTD DISCRETIZATION 

Characterization of the energy deposition and 
physical changes taking place in material properties 
during microwave processing requires solution of the 
electromagnetic and energy transport equations. The 
basic equations governing the electric and magnetic 
field vectors are expressed as the Maxwell curl 
relations [24]. These equations can be expressed in 
vector differential form in terms of the electric E (V 
m l) and magnetic H (A m ') fields as 

cOE 
e-~- = V × H - a c E  (1) 

cOH 
# ~ f  = - V × E ,  (2) 

where cro is the electrical conductivity, # is the magnetic 
permeability and e is the electrical permittivity. In 
rectangular coordinates, the curl equations can be 
expressed as a set of six coupled scalar partial differ- 
ential equations 

cOE~ cOIl= cOHy 
,~ o'eE x (3) 

t3t cOy cOz 

cOE~, dH~ 8H~ 
e cOt - a ~  cOx tr~Ey (4) 

aE= ally an~ 
a . . . .  aoE~ (5) 

at cOx cOy 

cOH~ cOEy cOE= 
(6) 

It cOt 8z cOy 

cOHy cOE. cOEx 
I~ Ot = cOx - 8z (7) 

OH= 8E~ cOEy 
- ( 8 )  

/t cOt cOy 8x" 

Assuming a plane-polarized radiation source, 
Maxwell's equations decouple into one of two pol- 
arization states: transverse electric mode ( T E )  and 
transverse magnetic mode ( T M ) .  For  two-dimen- 
sional problems, assumed uniform and infinite in the 
z-direction, the T E  equations reduce to 

cOEz cOHy 8H 
e - " aoE~ (9) 

cOt 8x cOy 

cOHx cOE~ 
/2 cOt = -  cO~- (10) 

cOHy cOE~ 
# cOt cOx (11) 

and the TM equations are expressed as 

COHz COEx C3Ey 
/.t COt - COy cOx (12) 
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OEx ~H~ 
e - (13) 

Ot Ox 

0Ey 0H~ 
e 0t 0x aces. (14) 

The TM equations contain only the electric field in 
the x-y plane along with the induced magnetic field 
and the TE equations contain only the magnetic field 
in the x-y plane along with the induced electric field. 
In this study we consider only TE polarization, 
although TM polarization could just as easily be simu- 
lated. 

The FDTD formulation is obtained by approxi- 
mating temporal and spatial derivatives using central 
differencing (second-order accurate). The electric and 
magnetic fields are interweaved both spatially and 
temporally, resulting in a leapfrog scheme [25]. The 
electric field vector components are offset one half cell 
in the direction of their corresponding components, 
while the magnetic field vector components are offset 
one half cell in each direction orthogonal to their 
corresponding components. The E and H-fields are 
evaluated at alternate half time steps. For  TE mode, 
the electric and magnetic field components are 
obtained as 

tr~(i,j)At 
1 

ET(i,j) - 2e(i,j) ET-'(i,j) 
tre(i,j)At 

l + - -  
2e(i,j) 

At 1 + 
s(i,j) tre(i,j) 

l + - -  
2e(i,j) 

~H~-'/2(i+ 1/2,j) - H y - ' / 2 ( i -  1/2,j) 

H~ '/2 (i,j-- 1/2) -- H~-'/2 (i,j + 1/2) ] 
+ ~ ~ ( 1 5) 

H~+~/2(i,j+ 1/2) = H"~-l/2(i,j+ 1/2) 

tropic materials can also be modeled by specifying 
unique properties at sub-cell nodes. Although schemes 
have been developed to handle curved surfaces, i.e. 
non-rectangular geometries, as long as the grid size is 
small compared with an object's dimensions, rec- 
tangular grids will be sufficient [18]. 

The choice of spatial and temporal resolution is 
motivated by reasons of stability and accuracy. To 
insure stability of the time-stepping algorithm, At 
must be chosen to satisfy the Courant stability con- 
dition 

1 
At ~ (18) 

x~A_~2 1 1 - '  Cmax + - -  + - -  A y 2 Az 2 

where Cmax is the maximum electromagnetic wave 
phase velocity within the media modeled. For the two- 
dimensional case, the corresponding numerical stab- 
ility expression can be obtained by setting Az ~ oo. 
Clearly, the spatial resolution must insure adequate 
sampling to avoid aliasing of the smallest wavelength 
encountered. Generally, to achieve accurate solutions, 
the spatial resolution should closely approach the situ- 
ation where an integer number of cells span a wave- 
length. In a cavity with a highly conductive enclosure 
containing a sample, the wavelength within the sample 
changes to reflect the jump in refractive index from 
the surrounding air. Consequently, determination of 
spatial resolution should consider cavity and sample 
configuration as well as electric properties. In 
addition, numerical dispersion (a variation in numeri- 
cal wave phase velocity with wavelength and propa- 
gation direction) arises from lattice discretization, 
leading to such non-physical results as artificial ani- 
sotropy and pseudo-refraction. The spatial mesh must 
be small enough to reduce numerical dispersion to an 
acceptable level. 

3. ELECTRIC FIELD DISTRIBUTIONS IN A TWO- 
DIMENSIONAL WAVEGUIDE-CAVITY 

At ~ET(i , j )-En(i , j+ 1)} (16) 
+ p(i,j+ 1/2) [ Ay 

H~'. + ' /z(i+ 1/2,j) = Hy- , /2( i+  1/2,j) 

At ~ET(i+ 1,j) - ET(i,j)~ 
+ p ( i+  1/2,j) [- Axx j .  (17) 

Similar equations can be obtained for the TM mode 
through use of duality. Interfaces between media can 
be easily handled, although they must be placed at 
integer nodes. Unique electromagnetic properties can 
be assigned to each unit cell in the lattice, enabling 
straightforward computation of inhomogeneous 
problems; an important ability when properties are 
temperature dependent. In addition, since each unit 
cell has all six electromagnetic components, aniso- 

To assess the variation of electric fields in a typical 
microwave processing cavity, we examine a simple 
two-dimensional multi-mode cavity operating in the 
TE33 mode. A short square waveguide, centered at 
one of the faces, is used to deliver a microwave planar 
source sinusoidally distributed in space and time with 
a peak amplitude of 1000 V m -]. The size of the 
waveguide was chosen to be ~/2/220 (8.67 x 8.67 cm), 
where 20 = co/f is the corresponding wavelength in 
free space for a frequency o f f  = 2.45 GHz. The cavity 
size is set to 3/2,,/220 (26 x 26 cm). Figure 1 shows a 
schematic of the waveguide and cavity, and includes 
a square specimen of dimension 8.67 x 8.67 cm at the 
cavity center. The walls of the cavity and waveguide 
are modeled as nearly perfect electrical conductors. 

The computational domain is conservatively set 
such that the spatial resolution of each cell is 
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Ax = Ay = xf2/4020, thus providing 60 x 60 cells in 
the cavity and 20 x 20 cells in the waveguide. The 
temporal resolution is determined by At = Ax/ 
(x/2c0), which satisfies the stability criterion set in 
equation (18). The excitation source is modeled as 
time harmonic, thus the root-mean-square value 
can be computed over a half cycle period at each 
spatial point. 

Figure 2a-c displays the E~ms field within an empty 
cavity and waveguide for three different operating 
frequencies after 10 000 time steps. Figure 2a shows 
the resulting square modal patterns corresponding to 
the 2.45 GHz resonant frequency. In this case the 
cavity is highly resonant and supports nearly perfect 
standing waves. Figure 2b,c illustrates the non-res- 
onant characteristics achieved with source frequencies 
of _+ 10% of the resonant frequency. By introducing 
waves differing from the resonant frequency, there is 
a continuous change in phase of wavefronts arriving 
at any given grid point (no consistent constructive 
interference) and hence the amplitudes of the E~ms 
fields are modulated over time. Consequently, the Er~s 
values are lower and more uniform than in the res- 
onant case. 

Power absorption in an electromagnetically heated 
material is often quantified with respect to the skin 

depth, the distance in which the electric field amplitude 
falls to e -~ of its value at the material surface. In terms 
of optical parameters, the skin depth is defined as [26] 

n2 
3 - k2~z' (19) 

where n and k are the real and imaginary indices of 
refraction. In terms of electrical properties, the skin 
depth can be expressed as [24] 

1 
6 - ( 2 0 )  

C O ~ ( I ~ I  -~- (O'/(DE) 2 - -  1)1/2" 

While informative for understanding the difference 
in material properties, skin depth does not adequately 
address the influence of cavity and sample size and 
geometry, which can be uncovered via detailed simu- 
lation. 

Figure 3a~d displays E~m~ values with 8.67 x 8.67 em 
specimen in the cavity at 2.45 GHz. The electrical 
conductivity (S m- i )  (Siemen m -1) and the relative 
dielectric constant for Fig. 3a-d are 0.1 and 2, 0.1 and 
4, 0.1 and 8 and 0.33 and 8, respectively. Figure 3a 
shows that the presence of the specimen can disrupt 
the E~ms pattern in the cavity significantly. Figure 3b 
displays a symmetric pattern in both x and y direc- 
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Fig. 2. E~s (V m ]) pattern in an empty cavity at (a) 2.45 GHz, (b) 2.205 GHz ( -  10%), and (c) 2.695 
GHz (+ 10%). 
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Fig. 3. Erm s ( V  m -l) pattern in an empty cavity at (1) er = 2.0 and ao = 0.01 S m -l, (b) gr = 4.0 and 
ere = 0.01 S m -1, (c) 8r = 8.0 and ao = 0.01 S m -l, and (d) er = 8.0 and ae = 0.33 S m -1. 

tions, a result o f  phase matching of  reflections off  the 
specimen and walls. This pattern depicts a resonant 
behavior, as exemplified by the high local intensities 
throughout the cavity. Note  that the modal  pattern of  
3 × 3 squares is still evident. Figure 3c displays nearly 
symmetric behavior, indicative of  patterns in the 
neighborhood of  a resonance. In this instance, the Er~s 
values are much higher than those shown in Fig. 3a, 
but still significantly less than the resonant condition 
of  Fig. 3b. Comparing Fig. 3c and d shows that 
increasing ae redistributes the fields and further lowers 
the field values. Identification of  very local field vari- 
ations illustrates the ability of  the F D T D  approach to 
detect very local physical changes, significant when 
heating materials with impurities (such as local voids 
or small metallic particles) or inhomogeneity due to 
temperature dependence. 

To illustrate the effect o f  property variation on 
absorption, Table 1 shows the total electromagnetic 
power (nondimensionalized with respect to the 
max imum value simulated) absorbed by the specimen 
for a range of  electrical properties. The total average 
power absorbed per unit depth can be calculated by 
summing over each node in the material sample, i.e. 

Q t o t a l  = ~ i ~ - . / O ' e l E r m s l 2 m x m y  • ( 2 1 )  

The power absorbed by the sample with a relative 
dielectric constant, gr = g/g0, equal to 2.0 exhibited 
a steady increase as the electrical conductivity was 
increased. This trend can be attributed to the decrease 
in the penetration depth of  the material. The power 
absorbed when ~r equals 4.0 exhibited the opposite 
behavior with increasing electrical conductivity. In 
this case the power absorbed by the sample was domi-  
nated by a resonant behavior. The sample size and 
geometry, in conjunction with the index of  refraction, 
determine the relative phase o f  the wavefronts in the 
sample and hence the amounts o f  constructive inter- 
ference. Resonant behavior is also depicted when gr 
equals 8.0. In this case the resonance is not as strong 

Table 1. Dimensionless power absorption in an 8.67 x 8.67 
cm 2 sample 

a¢(Sm 1) 

~r 0 . 0 1  0 . 0 3  0 .1  0 . 3  1 .0  

2.0 0.008 0.024 0.050 0.063 0.065 
4.0 1.000 0.340 0.152 0.085 0.073 
8.0 0.100 0.062 0.047 0.073 0.084 

12.0 0.125 0.279 0.249 0.126 0.094 
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and the power absorbed dips at around ae = 0.1 S 
m -1. The power absorbed when er equals 12.0 exhibits 
a maximum near the middle of the electric con- 
ductivity range, indicating resonance. These results 
illustrate that the power absorbed is strongly depen- 
dent on whether the system is at or near resonance. 

Table 2 displays the dimensionless power absorp- 
tion for a variety of sample sizes with different dielec- 
tric constants (the electrical conductivity is 0.1 S m i). 
The underlying trend displayed in Table 2 is a steady 
increase in power deposition with sample size until a 
critical dimension is reached, in this case 13 × 13 cm 2, 
followed by a steady decrease. This phenomenon is 
analogous to the co~acept of cut-off frequency. Simply 
stated, electromagnetic waves cannot propagate 
between guiding surfaces separated by less than one- 
half wavelength. In this case, when the distance 
between the sample edges and the cavity walls is less 
than 20/2 = 6.13 cm the waves are strongly attenuated 
as they attempt tc propagate around the sample. 
Thus, the effective surface area for wave penetration 
into the sample is reduced and the power deposition 
decreases accordingly. However, since resonant 
behavior is achieved for some of the situations en- 
countered, e.g. samples of er equal to 4.0 and 12.0, 
absorption peaks will occur at sample sizes below cut- 
off. At sample sizes above cut-off, where there are 
no resonances, power absorption will decrease with 
increasing er, since absorption occurs mostly at the 
front surface (note, the skin depth 6 increases with ~r 
in this frequency regime). 

4, HEAT TRANSPORT 

Since our ultima~:e interest is in the thermal effect 
microwave energy imparts to materials, accurate 
computations of spatial and temporal temperature 
changes are imperative to achieve basic understanding 
and control of heating processes. This is especially im- 
portant for materials in which absorption of micro- 
wave energy is highly temperature dependent. 

The governing energy equation describing the tem- 
perature rise in the heated material is the time-depen- 
dent heat diffusion ,equation, 

~T 
p C  f f [  = V" ( k V T )  + Qem, (22) 

where p, C and k are the sample density, specific 
heat and thermal conductivity, respectively. The local 
electromagnetic heat source Qem is directly dependent 
upon the local value of the electric field, 

Qer, = trelE] 2. (23) 

Heat is lost from the sample via natural convection 
and radiation. The convective heat flux is computed 
along the edges of the sample using 

q . . . .  = hdT¢ - T , ) ,  (24) 

where the subscripts e and a are used to denote sample 
edge and ambient temperatures, respectively. The 
radiative heat flux from a surface element i to the 
cavity walls is computed as 

-Tw),  qrad,_w -= ae( T7 4 (25) 

where e denotes radiative emissivity (assumed the 
same on both sample and walls), and a is the Stefan- 
Boltzman constant. (In this work, the sample surface 
does not see itself and the surfaces are diffuse.) 

An explicit finite difference method is used to solve 
the temperature field (the discretization formulation 
can be found in any elementary heat transfer text, e.g. 
[27]). The significant aspect pertains to the coupling of 
the thermal and electromagnetic solvers. Heat source 
terms are provided at each temperature node, so that 
the mesh used to solve the thermal problem is identical 
to that employed for the E-field solution. Since 
the time scale for electromagnetic transients is much 
smaller than the thermal response, Qem can be com- 
puted in terms of the local root-mean-square value of 
E. An iterative solution procedure is required when 
electromagnetic properties are temperature depen- 
dent. Calculation of the two governing equations on 
the same time scale is not feasible from a compu- 
tational standpoint because of scale disparity. Instead, 
electromagnetic property changes with temperature 
are monitored as processing proceeds and a criterion 
is established to determine when an electromagnetic 
computation is necessary to update the heat source 
for the thermal computation. 

Table 2. Dimensionless power absorption for different 
sample sizes with ae = 0.1 S m-t 

Sample 
dimension 

(cm) 2.0 4.0 8.0 12.0 

5.20 x 5.20 0.122 0.062 0.156 0.086 
6.93 x 6.93 0.128 0.240 0.107 0.198 
8.67 x 8.67 0.201 0.611 0.190 1.000 

10.40 x 10.40 0.305 0.470 0.285 0.311 
13.00× 13.00 0.380 0.421 0.520 0.394 
15.60 x 15.60 0.266 0.193 0.156 0.104 
18.20× 18.20 0.170 0.127 0.086 0.070 

5. SIMULATION OF THERMAL RUNAWAY 

To illustrate a difficult microwave heating simu- 
lation, a specimen is chosen with highly temperature 
dependent electromagnetic properties, alumina. Alu- 
mina is a widely used ceramic with well-known 
electromagnetic properties. For simplicity, tem- 
perature dependent data for the electrical conductivity 
and relative dielectric constant of 99.5% alumina [28] 
at 2.45 GHz are fitted to a third-order polynomial, 
plotted vs temperature in Fig. 4. Thermal properties 
are considered constant with temperature: thermal 
conductivity k = 1.381 W m -l  °C-1, specific heat 
C=753.1  kJ kg ~ °C 1, density p = 3 8 2 0  kg m -3, 
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Fig. 4. Temperature dependence of dielectric properties for 99.5% alumina. 
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emissivity ~ = 0.6, and heat transfer coefficient hr = 5 
W m -2 °C-~, representing free convection. The cavity 
walls are maintained at a constant temperature and 
have an emissivity of  0.6. Initially, the cavity and 
sample are at a uniform temperature of  20°C. Cavity 
and waveguide dimensions and mesh resolution are 
identical to the previous simulations, and the sample 
is square, 8.67 x 8.67 cm 2. In this simulation we choose 
a fixed frequency of  2.45 GHz,  widely used for dom- 
estic and some industrial applications. 

The numerical procedure is to first compute a local 
heat source by running an electromagnetic simulation 
with uniform properties, determined from room tem- 
perature data. The electromagnetic simulation is per- 
formed until a sufficient period is reached in which a 
representative average rms of  the E-field at each spa- 
tial point is obtained, typically 40 000 time steps. The 

power deposition at each point is then computed and 
used to solve the time-dependent temperature field. 
As the thermal solver proceeds, the electrical conduc- 
tivity is monitored. Once the local value of  ~ro changes 
10% at any location from its value at the previous 
iteration, the electromagnetic field is then recomputed 
using updated dielectric properties. (A number of  iter- 
ation criteria were tested. The value of  10% was deter- 
mined to provide consistent temperature profiles.) 

Electric fields in the cavity/waveguide, including the 
sample, after the first and last iteration are shown in 
Fig. 5a,b, respectively. The first iteration, Fig. 5a, is 
performed with constant properties throughout  the 
specimen. The field distribution within the sample 
shows two well-defined peaks near the upper and 
lower front corners (closest to the waveguide). Peaks 
of  approximately half  this magnitude can be seen near 
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Fig. 6. Temperature distribution in alumina sample at (a) 7 min and (b) 74 min. 

the back corners and near the center of the front and 
rear edges. Thus, the energy deposition at the hot 
spots in the front are approximately four times that 
found at the hot spots in the rear (since energy depo- 
sition is related to ]62). The temperature distribution 
at the end of the first iteration, i.e. before another 
electromagnetic update, is shown in Fig. 6a, which 
corresponds to a heating period of 7 min. Note that 
the presence of hot spots, seen at the specimen front 
face, is consistent with the electric field pattern shown 
in Fig. 5a. Diffusion from the hot spots heats the entire 
front section, whereas the back section, with much 
lower energy deposition, remains relatively cool. Steep 
temperature gradients between the front and back 
sections are shown along the entire length down the 
midplane of the sample. 

Figures 5b and 6b show the electric field and tem- 
perature distribution at the last iteration, after 74 min 
of processing. At this stage ~r¢ has changed sig- 
nificantly throughout the specimen. Comparison of 
the initial electric and thermal fields shown in Figs. 5a 
and 6a, respectively, with the fields at the last iteration 
(Figs. 5b and 6b) displays the significant changes 
brought about by the variation in ac with temperature. 
As the hot spots in the front of the sample increase in 
temperature the ele.ztric fields are redistributed more 
symmetrically throughout the sample, indicative of a 
cavity which has approached a resonant mode. This 
is an interesting observation since the results displayed 
in Fig. 5a display :nonresonant behavior. Although 
thermal diffusion from the sample front to the rear 
section occurs, it is the redistribution of microwave 
energy that most strongly effects the thermal field in 
the sample, as evidenced by the locus of eight electric 
and thermal peaks. 

As the sample temperature reaches higher values, 
slight temperature differences can exhibit large vari- 
ations in ere, resulting in an exponential local tem- 
perature rise, or thermal runaway. In this situation, 
thermal diffusion and heat loss cannot keep pace with 

energy deposition at the sample hot spots. This is 
evidenced in Fig. 7, which shows the rise over time for 
the maximum, minimum, average and center tem- 
peratures. Notice that there is no definitive level at 
which local temperatures begin to take-off, but rather 
the sharp bend in the curve covers a range of approxi- 
mately 10°C. This phenomenon is due to the fact that 
thermal diffusion slows down the temperature rise at 
the local hot spots, while increasing the temperature 
throughout the sample. 

6. CONCLUSIONS 

A detailed numerical model is presented for solving 
Maxwell's equations in a microwave cavity containing 
a specimen. The model can be used to determine 
modal patterns in the cavity, detecting both resonant 
and non-resonant conditions. Simulations are per- 
formed to illustrate the influence specimen size and 
electrical properties have on microwave absorption 
and electric field patterns. The energy deposition in 
the sample can be computed from the electromagnetic 
simulations, allowing determination of the evolution 
of the thermal profile. 

To illustrate the power of the numerical technique, 
a strongly coupled electromagnetic-thermal problem 
is simulated, i.e. thermal runaway in a ceramic 
material. This phenomenon, caused by an exponential 
increase in electrical conductivity with temperature, 
presents a major challenge for microwave designers 
and processing engineers since poor product quality 
and sample cracking are often exhibited if temperature 
levels and distributions cannot be controlled. The 
simulation assists our understanding of how materials 
are heated and how temperature dependent dielectric 
properties influence electric field and temperature dis- 
tributions. In future work we will examine methods to 
avoid thermal runaway, or control it by using variable 
input power control and variable frequency process- 
ing. 
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